

Denilson Rodrigues de Araújo

Desenvolvimento de um modelo computacional de otimização e predição do valor de uso de pelotas de minério de ferro na rota redução direta – aciaria elétrica

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio

Orientador: Prof. José Carlos D'Abreu, DSc.

Rio de Janeiro Outubro de 2007

DENILSON RODRIGUES DE ARAÚJO

DESENVOLVIMENTO DE UM PROGRAMA COMPUTACIONAL PARA OTIMIZAÇÃO E PREDIÇÃO DE VALOR DE USO RELATIVO A PELOTAS DE MINÉRIO DE FERRO NA ROTA RD - FEA

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Carlos D`Abreu Orientador Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

> Dr. Helio Marques Kohler Consultor Independente da Samarco Mineração

Prof. Cláudio Batista Vieira Universidade Federal de Ouro Preto - UFOP

Dr. Ronaldo Santos Sampaio

RS CONSULTANTS LTDA

Prof. Francisco José Moura

Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 01 de outubro de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Denilson Rodrigues de Araujo

Graduou-se em Engenharia Metalúrgica pela Escola de Minas da Universidade Federal de Ouro Preto (UFOP) em 1993. Obteve o grau em Mestre em Engenharia de Metalurgia e de Minas pelo Curso de Pós-Graduação da Escola de Engenharia da Universidade Federal de Minas Gerais (UFMG) em 1997.

Ficha Catalográfica

Araujo, Denilson Rodrigues de

Desenvolvimento de um modelo computacional de otimização e predição do valor de uso de pelotas de minério de ferro na rota redução direta – aciaria elétrica / Denilson Rodrigues de Araujo ; orientador: José Carlos D'Abreu. – 2007.

204 f. : il. ; 30 cm

Tese (Doutorado em Ciência dos Materiais e Metalurgia)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007. Inclui bibliografia

1. Ciência dos Materiais e Metalurgia – Teses. 2. Modelamento. 3. Redução direta. 4. Termoquímico. 5. Minério de ferro. 6. Pelotas I. D'Abreu, José Carlos. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III Título.

CDD: 669

Agradeço especialmente a toda a minha família, em particular à minha esposa Julliana, pelo grandioso apoio, paciência, carinho e confiança.

Agradecimentos

Agradeço a toda a diretoria da Samarco Mineração S/A por estimular a continuidade dos programas de pós-graduação de seus empregados, a exemplo da assinatura do convênio entre a Samarco e a PUC-Rio, estabelecendo uma cooperação tecnológica e científica entre as duas instituições, cujo início deu-se com a realização deste trabalho.

Agradeço ao Eng.º Ricardo Vescovi de Aragão por ter sido entre 2002 e 2004 o meu grande incentivador, confiando-me este desafio, e por ter defendido, não somente o meu ingresso neste doutorado, mas a importância deste desenvolvimento dentro e fora da Samarco.

Agradeço ao Prof. Dr. José Carlos D'Abreu pela experiente e efetiva orientação deste trabalho, pelo tratamento respeitoso e cordial dirigido à minha pessoa, bem como pelo notável espírito colaborativo e de equipe.

Agradeço ao Dr. Hélio Marques Kohler pela co-orientação e por ter colocado a sua notável inteligência — acima da média por sinal — e grande experiencia computacional a serviço deste trabalho.

Agradeço ao Luiz Ricardo Melo por não ter medido esforços em liberar-me do trabalho para viagens à PUC-Rio e dar continuidade a este desenvolvimento ao longo período de 2005.

Agradeço ao Eng. Maury de Souza Junior por ter propiciado, a partir de janeiro de 2006, as condições necessárias para este doutorado ser concluído, sempre se colocando à disposição em ajudar no que fosse necessário.

Agradeço ao Dr. Ronaldo Santos Sampaio pelo honroso aceite em integrar a banca examinadora, pelas orientações, estímulo e momentos de discussão de alto nível acerca dos conceitos de valor de uso e do uso do modelo de forno elétrico, dentre outros assuntos de interesse da siderurgia.

Agradeço ao Prof. Dr. Cláudio Batista Vieira pelo honroso aceite em participar da banca examinadora, pela antiga amizade, pela orientação e estímulo desde a época de iniciação científica como aluno de graduação da UFOP e pelas várias cartas de recomendação.

Agradeço ao Prof. Francisco José Moura pelo honroso aceite em ingressar à banca examinadora, bem como pelo tratamento sempre respeitoso dentro e fora de sala de aula.

Agradeço ao Eng.º Atilio Grazziutti pelos ensinamentos repassados sobre a operação de um módulo de redução direta, nos anos ao longo dos quais estive atuando como consultor técnico de produto na gerência geral de marketing. Estes ensinamentos foram valiosos para a montagem do modelo de RD. Agradeço também pelo profissionalismo, pelo tratamento cordial e pela amizade construída nos tempos em que eu visitava constantemente a Siderca, para tratar de assuntos técnicos comuns à Samarco e àquela empresa. Agradeço ao Eng.º Fernando Oliveira Boechat pelo importantíssimo e valioso suporte técnico de alta qualidade na fase final e decisiva deste trabalho.

Agradeço ao Eng.º Augusto Mendoça Lessa por ter abraçado com muito vigor e espírito colaborativo a continuidade deste desenvolvimento e pelas relevantes contribuições.

Agradeço ao Eng.º Dr. José Henrique Noldin Júnior pela grande ajuda na elaboração desta tese, tendo sido uma das fontes inspiradoras na redação da mesma. Também pela grande amizade e consideração construída ao longo dos primeiros anos de doutorado e por ser minha referência quando o assunto é prontidão, otimismo e bom humor.

Agradeço ao Virgilio Costante Gaggiato pela presteza e rapidez no repasse das informações atualizadas e advindas do mercado.

Agradeço à Eng.^a Lesly Mamani Pac pela valiosa contribuição à frente do trabalho de mestrado, o qual concluiu em 2005, sobre a cinética de redução das pelotas da Samarco para as condições reinantes na zona de redução de um reator de redução direta, cujas informações foram relevantes para este doutorado.

Agradeço ao Eng.º Jafet Isidoro Carpio Vera pela importante contribuição à frente do trabalho de mestrado, o qual concluiu em 2005, sobre a cinética de carburização das pelotas da Samarco na zona de redução de um reator de redução, contribuindo também com informações importantes para este doutorado

Agradeço a toda a equipe do laboratório metalúrgico, em especial, aos laboratoristas Carlos Wagner Picolli e ao Maciel Rodrigues Rocha, pelo grande suporte e pró-atividade na realização dos experimentos laboratoriais, conduzidos durante os anos de 2004 e 2005, para os trabalhos da Lesly e do Jafet. Estendo um agradecimento especial aqui ao Elton Rocha, ao Marcelo Nazaro e ao Wagner Dutra.

Agradeço ao Eng.º Ramiro Ângulo Blacut que, como chefe de equipe dos laboratórios, deu o suporte devido à condução dos ensaios laboratoriais em 2004 e 2005, e por ter liberado o Fernando para me ajudar na fase final deste doutorado.

Agradeço ao Eng.º Mauricio Marques Otaviano que, como chefe de departamento da Engenharia de Processo em Ponta Ubu, autorizou e facilitou a condução dos ensaios laboratoriais em 2004, e contribuiu, recentemente, neste trabalho, acerca do fenômeno de carburização.

Agradeço aos demais membros da equipe de marketing, em especial, ao Eng.º Helio Cardoso Pereira e Eng.º Haroldo Elias Magalhães, pelas contribuições e discussões técnicas relativas às distintas experiências e visões advindas dos clientes, sobre a aplicação das pelotas Samarco, que ajudaram muito no direcionamento deste trabalho.

Agradeço ao Eng.º Laherce Ribeiro De Castro Neto pelos ensinamentos sobre rentabilidade econômica e pela amizade. Agradeço ao Eng.º Alexandre Font Juliá que contribuiu com um interessante artigo sobre rentabilidade econômica e pela prontidão para ajudar o Fernando na implementação de um nível mais automatizado de geração de relatórios, a partir do modelo computacional em questão.

Agradeço à Herta Corradi, pelo eficiente suporte no pagamento dos compromissos (notas fiscais) assumidos nos termos aditivos e pela prontidão na busca e na compra de vários artigos técnicos.

Agradeço à Tatiana Silva e Silva pelo apoio na programação das viagens para o RJ, bem como no suporte às respectivas prestações de contas, no tempo em que eu integrava a equipe de "marketing".

Agradeço à Ingrid Mattos Ribeiro pelo profissionalismo e apoio na programação das viagens para o RJ, bem como no suporte às respectivas prestações de contas e na organização do evento da defesa.

Agradeço aos meus pais pelo berço e pela educação que me deram, bem como por sempre torcerem intensamente por mim.

Agradeço à "D. Nice" pelo enorme carinho e grande preocupação comigo ao longo destes anos de estudo, além da prontidão como nas inúmeras madrugadas sempre com "aquele" cafezinho.

Agradeço ao pequeno Nícolas Mantovani de Araújo por me proporcionar um novo sentido à minha vida.

Agradeço à Vice Reitoria Acadêmica da PUC-Rio pela concessão da bolsa VRAc de isenção.

Agradeço a todas as demais pessoas que, direta ou indiretamente, deram alguma contribuição neste trabalho, demonstrando mais uma vez que na vida ninguém faz nada sozinho.

Agradeço finalmente a Deus por me ajudar a vencer mais este desafio. Não foi fácil — ele sabe bem disso — conciliar as vidas profissional e acadêmica em um projeto de médio-prazo, como é um programa de doutorado. Somente nós dois sabemos bem o que foram estes quase 6 anos. Muita ansiedade em terminar e fazer um bom trabalho, inúmeros fins de semana e feriados de dedicação, incontáveis madrugadas de estudo que exigiram muita disciplina, persistência, superação, sacrifícios e abstinências.

Resumo

Araujo, Denilson Rodrigues de; D'Abreu, José Carlos. **Desenvolvimento** de um modelo computacional de otimização e predição do valor de uso de pelotas de minério de ferro na rota redução direta – aciaria elétrica. Rio de Janeiro, 2007. 204 p. Tese de Doutorado – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

Pelo presente trabalho, buscou-se desenvolver uma ferramenta capaz de analisar e otimizar o uso de pelotas de minério de ferro em processos tradicionais de redução direta do tipo forno cuba. A criação de um modelo termoquímico do processo MIDREX foi proposta e elaborada dentro da PUC-Rio, levandose também em conta alguns aspectos cinéticos relativos à redução dos minérios e à carburização do ferro-esponja, bem como alguns parâmetros operacionais. Este modelo foi subseqüentemente adaptado para interagir com um segundo modelo termoquímico de forno elétrico a arco da RS Consultants, representando assim a cadeia de fabricação de aço líquido primário pela rota redução direta forno elétrico a arco. Para o gerenciamento computacional do processo de otimização e interação com os dois modelos acima citados, desenvolveu-se, adicionalmente, um terceiro modelo, o qual foi designado neste trabalho como modelo GESTOR. Um máximo uso de ferro-esponja - e de pelotas, consegüentemente — é objetivado sempre que possível, sob determinadas condições operacionais pré-estabelecidas. A avaliação econômica destes processos foi embasada em conceitos de valor de uso. Alguns resultados são apresentados neste trabalho, para demonstrar a efetividade e o poder de análise da ferramenta e espera-se que os profissionais da Samarco possam fazer uso deste instrumento de traba-Iho, dando o devido suporte à tomada de decisão à comercialização e ao desenvolvimento de produtos existentes ou novos.

Palavras-chave

Modelamento; redução direta; termoquímico; minério de ferro; pelotas.

Abstract

Araujo, Denilson Rodrigues de; D'Abreu, José Carlos. **Development of a computational tool for optimization and value in use forecast for iron ore pellets through the direct reduction – electric steelmaking route.** Rio de Janeiro, 2007. 204 p. D.Sc. thesis – Department of Materials Science and Metallurgy, Rio de Janeiro's Catholic University.

The study at issue searched for developing an innovative tool able to effectively analyze and optimize the industrial usage of iron ore pellets undergoing traditional gas-based direct reduction processes. The creation of a thermochemical model for MIDREX process was proposed and carried out by PUC-Rio, taking into account relevant characteristics related to DRI carburization and reduction kinetics, as well as some important operating parameters. Subsequently, this model was adapted in order to interact with a second thermo-chemical model owned by RS Consultants and able to represent an electric arc furnace operation. In this sense, it has been possible to represent thereby the iron and steelmaking route based on direct reduction and electric arc furnace. For the computational management of the optimization methodology and interaction involving the two models above-mentioned, a third model was developed and referred to as "GE-STOR" model. It was built to maximize the DRI usage - and pellets utilization, consequently — respecting certain operating conditions previously established. Economic assessments shall be made premised upon value in use concepts. Some results are shown in this study, based on a hypothetical scenario, aiming at proving the effectiveness of this tool. Its adoption by Samarco's experts is expected as an important supportive methodology to help them to make decisions properly concerning both marketing strategies and product development activities.

Keywords

Modeling; direct reduction; thermo-chemistry; iron ore; pellets.

Sumário

1.	Introdução	23
2.	Objetivo do Trabalho	27
3.	Revisão Bibliográfica	28
3.1.	Principais Matérias-Primas Empregadas na Produção de Aço Líquido via FEA	28
3.2.	Aumento do interesse da utilização do DRI/HBI na produção de aço via FEA.	32
3.3.	Principais aspectos fundamentais relacionados às tecnologias de obtenção de ferro-esponja e ao processo de redução direta de minérios de ferro	33
3.3.1.	Generalidades	33
3.3.2.	Algumas considerações termodinâmicas relativas à redução de minério de ferro	36
3.3.3.	Algumas considerações cinéticas relativas à redução de minério de ferro	37
3.3.4.	Algumas considerações referentes à carburização do ferro-esponja durante o processo de redução direta	47
3.4.	Principais tecnologias disponíveis para a produção de ferro-esponja	53
3.4.1.	Processo MIDREX	54
3.4.2.	Processo HYL	58
3.4.3.	Transporte a quente de ferro-esponja entre a planta de redução direta e a aciaria elétrica adjacente	60
3.4.4.	Aspectos fundamentais e práticos ligados ao armazenado e transporte do pré-reduzido na forma de CDRI ou HBI	64
3.5.	Critérios comerciais e técnicos praticados para seleção de pelotas para a produção de DRI/HBI	70
3.5.1.	Mecanismos atuais e critérios comerciais para definição do preço de minérios de ferro	70
3.5.2.	Critérios técnicos adotados para a seleção de cargas ferríferas para o emprego em redução direta	74
3.5.3.	Aspectos ligados à composição química de minérios de ferro destinados ao mercado de redução direta	74

3.5.4.	Aspectos ligados às propriedades metalúrgicas de minérios de ferro destinados ao mercado de redução direta	78
3.5.5.	Aspectos ligados às características físicas de minérios de ferro destinados ao mercado de redução direta	81
3.6.	Importância do emprego de pelotas de minério de ferro na produção de DRI/HBI	84
3.7.	Características técnicas importantes do DRI/HBI	87
3.7.1.	Características Físicas	87
3.7.2.	Características Químicas	89
3.8.	Descrição do processo de fabricação de aço líquido em fornos elétricos a arco (FEA)	91
3.8.1.	Introdução ao processo de elaboração de aço líquido em fornos elétricos a arco	91
3.8.2.	Ciclo básico de operações em um forno elétrico a arco	94
3.8.3.	Principais matérias-primas empregadas em fornos elétricos a arco	95
3.8.4.	Aplicação de energia elétrica na fabricação de aço via FEA	98
3.8.5.	Geração de energia química na fabricação de aço via FEA	99
3.8.6.	Outros aportes térmicos ao processo de fabricação de aço em FEA	102
3.8.7.	Adição de fundentes na fabricação de aço via FEA	104
3.8.8.	Algumas considerações complementares sobre a operação de carregamento e seu impacto na etapa de fusão	104
3.8.9.	Algumas considerações sobre o refino do aço em FEA	106
3.9.	Impacto das propriedades do DRI/HBI no desempenho do FEA	110
3.9.1.	Impacto do grau de metalização do DRI/HBI na operação de um forno elétrico a arco	111
3.9.2.	Impacto do teor de carbono contido no DRI/HBI na operação de um forno elétrico a arco	113
3.9.3.	Impacto do teor de ganga do DRI/HBI na operação de um forno elétrico a arco	117
4.	Desenvolvimento e Metodologia de Trabalho	122
4.1.	Considerações sobre modelagem na engenharia	122
4.1.1.	Conceitos importantes	122

4.1.2.	Modelagem de processos siderúrgicos	124
4.1.3.	Modelagem de processos alternativos de redução de minérios de ferro	125
4.2.	Modelos Desenvolvidos e Arquitetura Básica de Integração	125
4.3.	Modelo DR	127
4.3.1.	Concepção original	127
4.3.2.	Concepção do balanço global de massa e de energia do forno de cuba	130
4.3.3.	Principais fluxos gasosos periféricos ao forno de cuba, essenciais ao balanço de massa e de energia global do reator de redução	133
4.3.4.	Considerações sobre os fluxos de sólidos para fechamento do balanço de massa e de energia global no forno de redução	137
4.3.5.	Alguns detalhes importantes sobre o modelo DR original construído a partir dos balanços estagiados de massa e de energia através do forno de cuba	140
4.4.	Modelo EAF	145
4.4.1.	Considerações gerais	145
4.4.2.	Variáveis de entrada e de saída do modelo EAF	147
4.5.	Modelo GESTOR	151
4.5.1.	Considerações gerais	151
4.5.2.	Aspectos matemáticos e computacionais	151
4.5.3.	Nomenclatura das entidades do GESTOR	153
4.5.4.	Procedimento de otimização a partir da utilização do GESTOR	158
4.5.5.	Metodologia de otimização	160
4.6.	Impacto do atual modelo de definição de preços de pelotas de minério no desenvolvimento de novas especificações	162
4.7.	Aplicação do conceito de diferenciação para pelotas de minério de ferro	162
4.8.	Revisão do conceito de produto	163
4.9.	Conceito de valor de uso aplicado ao desenvolvimento de pelotas de minérios de ferro, adotadas na rota de fabricação de aço líquido, via redução direta e forno elétrico a arco	165
4.9.1.	Introdução	165
4.9.2.	Conceitos importantes	166

4.9.3.	Estudo de caso 1: valor de uso de um determinado granulado em uma planta de redução direta	170
4.9.4.	Estudo de caso 2: valor de uso de pelotas de alta sílica na redução direta e seu impacto na aciaria elétrica	171
4.9.5.	Estudo de caso 3: valor de uso de pelotas de mais baixo teor em ferro na redução direta e seu impacto na aciaria elétrica	174
4.9.6.	Estudo de caso 4: valor de uso de pelotas de mais baixo percentuais de CaO + MgO na redução direta e seu impacto na aciaria elétrica	175
4.9.7.	Estudo de caso 5: valor de uso de pelotas com um teor mais alto de finos para a operação combinada RD/FEA	176
5.	Resultados e Discussões	177
5.1.	Considerações preliminares	177
5.2.	Proposição de um estudo de caso	177
5.3.	Análise dos resultados obtidos para o estudo de caso proposto	183
6.	Conclusões	191
7.	Recomendações e sugestões para trabalhos futuros	193
8.	Referências Bibliográficas	195

Lista de figuras

Figura 1	Rotas tradicionais de produção de aço.	24
Figura 2	Rota de produção de aço líquido em fornos elétricos a arco.	31
Figura 3	Diagramas de equilíbrio: (a) Fe-O (33); (b) Fe-C.	35
Figura 4	Diagrama de oxidação-redução dos sistemas Fe-C-H-O.	37
Figura 5	Quantidades removidas de oxigênio em cada etapa de redução a partir dos respectivos óxidos de ferro para produção de uma tonelada de ferro metálico.	38
Figura 6	Influência da porosidade dos minérios de ferro sobre a sua redutibilidade.	39
Figura 7	Comparação entre o processo de redução de (a) uma partícula de minério de ferro denso e (b) uma partícula de minério poroso.	39
Figura 8	Influência da gênese do concentrado de minério de ferro sobre a porosidade interna de distintas pelotas.	40
Figura 9	Influência da pressão parcial do gás redutor (CO ou H_2) em misturas (CO + N_2) e (H_2 + N_2) sobre a cinética de redução.	40
Figura 10	Influência do teor de H ₂ em misturas (CO+CO ₂ +H ₂) sobre a cinética da reação de redução.	41
Figura 11	Influência do tamanho médio de minérios granulados sobre a redutibilidade.	42
Figura 12	Influência do tamanho médio das pelotas de minério de ferro sobre a redutibilidade.	42
Figura 13	Influência do tamanho médio das pelotas de minério de ferro sobre a suscetibilidade à degradação de pelotas de minério de ferro.	43
Figura 14	Influência da temperatura na velocidade de redução de pelotas de minério de ferro tipicamente mais porosas e redutíveis.	44
Figura 15	Influência da temperatura na velocidade de redução de pelotas de minério de ferro hipoteticamente menos porosas e redutíveis.	44
Figura 16	Comportamento de um determinado tipo de pelotas de minério de ferro sob condições de temperatura, pressão e composição gasosa próximas à região pela qual efetua-se a entrada dos gases redutores na zona de redução de um forno de redução direta do tipo cuba.	45
Figura 17	Comportamento de um determinado tipo de pelotas de minério de ferro sob condições de temperatura, pressão	

	e composição gasosa próximas à linha de carga na zona de redução de um forno de redução direta do tipo cuba.	46
Figura 18	Grau de reação em função do tempo, para T = 900° C e $\Omega = 0.85$.	46
Figura 19	Grau de reação em função de tempo, para T = 700°C e Ω = 0,85.	47
Figura 20	Viabilidade termodinâmica para formação de carbono.	49
Figura 21	Adsorção de carbono sobre a superfície de ferro metálico a partir de uma atmosfera rica em CH ₄ .	49
Figura 22	Adsorção de carbono sobre a superfície de ferro metálico a partir de uma atmosfera rica em CO.	50
Figura 23	Diagrama de equilíbrio Fe – C .	51
Figura 24	Deposição do carbono em função do tempo.	52
Figura 25	Evolução da produção de ferro-esponja no mundo.	53
Figura 26	Produção de ferro-esponja no mundo por processo em 2006.	53
Figura 27	Processo Midrex para produção de ferro-esponja descarregado após resfriamento.	55
Figura 28	Processo Midrex para produção de briquetes a quente de ferro-esponja.	56
Figura 29	Vista de cima de um reformador utilizado pela tecnologia Midrex para produção de ferro-esponja.	57
Figura 30	Foto de catalisadores utilizados nos reformadores empregados pela tecnologia Midrex de produção de ferro-esponja.	57
Figura 31	Processo HYL III de produção de ferro-esponja.	59
Figura 32	Processo HYL na sua versão "self-reforming process".	60
Figura 33	Sistema de transporte pneumático de ferro-esponja HYTEMP da HYL.	61
Figura 34	Sistema de transporte a quente de ferro-esponja na versão HOTLINK da Midrex.	63
Figura 35	Sistema de inertização com nitrogênio aplicado a um porão para transporte marítimo de DRI em conformidade com a "International Maritime Organization (IMO)".	64
Figura 36	Comparativo entre os dois formatos possíveis para o ferro-esponja produzido via redução direta.	65
Figura 37	Diferentes formas e volumes para os briquetes de HBI.	66
Figura 38	Descrição esquemática de um processo de briquetagem a quente de ferro-esponja.	66

Figura 39	Comparação entre as porosidades existentes na estrutura interna do ferro-esponja antes e após briquetagem a quente.	66
Figura 40	Faixa de reatividade para vários tipos de pré-reduzidos.	67
Figura 41	Evolução anual das exportações de HBI e DRI.	68
Figura 42	Evolução do preço da unidade de ferro para pelotas e granulados para o mercado de redução direta.	73
Figura 43	Comparativo entre a evolução histórica do preço de pelotas de redução direta em relação às pelotas de alto- forno.	73
Figura 44	Percentuais de ferro e de escória de pelotas, comercializadas para o mercado de redução direta.	75
Figura 45	Diagrama de energia livre para os componentes de interesse na produção de HBI, mostrando a maior estabilidade do 3CaO.P ₂ O ₅ em comparação ao FeO.	77
Figura 46	Curvas de redutibilidade de minério em várias situações, mostrando a influência destas no tempo de residência crítico do minério.	79
Figura 47	Efeito do grau de metalização de um ferro-esponja sobre a capacidade produtiva de um módulo de redução direta.	79
Figura 48	Influência do diâmetro médio sobre o volume de vazios e a perda de carga através de um leito de pelotas.	82
Figura 49	Influência do tamanho médio sobre a perda de carga através de um leito de pelotas, para diferentes velocidades a vazio do escoamento gasoso.	82
Figura 50	Impacto da homogeneidade granulométrica sobre a fração de vazios contida em um leito de partículas esféricas de diâmetro "d" e "D".	83
Figura 51	Impacto das condições mercadológicas sobre o uso de pelotas de minério de ferro na rota de fabricação de aço através da rota redução direta – forno elétrico a arco.	86
Figura 52	Visão panorâmica de um forno elétrico a arco em operação.	91
Figura 53	Visão parcial de uma aciaria elétrica.	91
Figura 54	Visualização esquemática do processo de fabricação de aço líquido em fornos elétricos a arco, pelo uso intenso de eletricidade e de técnicas de injeção de oxigênio.	92
Figura 55	Vista externa da carcaça superior de um forno elétrico.	92
Figura 56	Vista interna da carcaça de um forno elétrico, evidenciando os painéis refrigerados a água.	93

Figura 57	Vista interna de uma abóbada de um forno elétrico a arco.	93
Figura 58	Componentes básicos de forno elétrico a arco.	93
Figura 59	Ciclo básico de operação de um forno elétrico a arco.	94
Figura 60	Utilização da potência dos transformadores ao longo do ciclo básico de operação de um forno elétrico a arco.	94
Figura 61	Sucata metálica de ferro em alguns formatos e origens distintos.	95
Figura 62	Sucata metálica de ferro prensada em pacotes.	95
Figura 63	Pilha de lingotes de ferro-gusa sólido, produzidos a partir de mini altos-fornos.	96
Figura 64	Pátio de sucata adjacente a uma aciaria elétrica.	96
Figura 65	Sistema de alimentação contínua de pré-reduzido em uma aciaria elétrica.	97
Figura 66	Eletrodo de grafite para emprego em fornos elétricos a arco.	99
Figura 67	Aspecto incandescente de um eletrodo de grafita em operação em um forno elétrico.	99
Figura 68	Injeção de oxigênio para o interior do banho líquido em um forno elétrico.	101
Figura 69	Injeção combinada de oxigênio e carbono em um forno elétrico.	102
Figura 70	Vista de cima dos posicionamentos dos queimadores "oxi-fuel" nas paredes no FEA para aquecimento dos pontos frios da carga sólida.	103
Figura 71	Diagrama de Sankey para o balanço térmico de uma operação convencional de um forno elétrico a arco.	103
Figura 72	Carregamento de carga sólida por cesto em um forno elétrico.	105
Figura 73	Carregamento de gusa líquido em um forno elétrico a arco.	105
Figura 74	Estrutura de uma escória composta de SiO ₂ e CaO, didaticamente mostrando o processo de despolimerização pela adição de CaO.	107
Figura 75	Efeito da escória espumante sobre a radiação do arco voltaico.	109
Figura 76	Nível de nitrogênio no aço, ao final da corrida, como função do HBI carregado em um FEA.	109
Figura 77	Consumo de energia de um forno elétrico a arco, em função do grau de metalização do pré-reduzido, para distintos percentuais de carregamento.	112

Figura 78	Efeito do grau de metalização do pré-reduzido sobre o consumo de energia elétrica, na produção de aço líquido, em fornos elétricos a arco.	112
Figura 79	Rendimento metálico em uma dada operação de forno elétrico a arco como função do grau de metalização do pré-reduzido.	113
Figura 80	Impacto do percentual de carbono, contido no pré- reduzido, sobre os teores de ferro total e de ferro metalizado.	113
Figura 81	Efeito do carbono, contido no pré-reduzido, sobre a quantidade de energia requerida em um FEA, para a fusão e o refino do aço líquido, para distintas condições de carregamento.	116
Figura 82	Efeito da utilização de DRI sobre o teor de nitrogênio, na produção de aço via FEA.	116
Figura 83	Diminuição do consumo de energia elétrica na produção de aço líquido em fornos elétricos a arco, devido ao aumento do conteúdo de carbono no ferro-esponja.	117
Figura 84	Efeito do teor de sílica do pré-reduzido, no consumo de energia elétrica de um forno elétrico a arco, para diferentes proporções de carregamento.	118
Figura 85	Efeito do teor de ganga ácida sobre o valor de uso do DRI, para quantidades crescentes no carregamento.	118
Figura 86	Efeito do teor de ganga do DRI na massa de escória.	119
Figura 87	Efeito do teor de ganga do DRI na massa de escória.	120
Figura 88	Efeito simultâneo do grau de metalização, da quantidade de ganga e da basicidade do pré-reduzido, diante do consumo de energia no processo de fabricação de aço líguido em FEA.	121
Figura 89	Representação simplificada do processo de modelagem.	123
Figura 90	Representação esquemática de um modelo matemático de simulação.	123
Figura 91	Representação esquemática de um modelo matemático de otimização.	123
Figura 92	Representação esquemática da arquitetura básica de integração, envolvendo o modelo GESTOR e os modelos DR e EAF.	126
Figura 93	Tela principal de acesso pelo usuário ao modelo DR.	129
Figura 94	Entradas e saídas consideradas para o balanço de massa global do processo de obtenção de ferro-esponja resfriado, através de um forno de redução direta do tipo cuba.	131

Figura 95	Principais fluxos gasosos típicos em uma planta industrial típica segundo a tecnologia Midrex, para a condição de descarga de ferro-esponja, após resfriado.	135
Figura 96	Tela do modelo DR disponível ao usuário para ingresso das características de cada componente da carga ferrífera.	137
Figura 97	Esquema ilustrativo da etapa de peneiramento dos minérios previamente enfornados no módulo de redução direta, conforme considerado pelo balanço de massa global do modelo termoquímico de redução direta.	138
Figura 98	Esquema dos fluxos de sólidos através do forno de cuba assumidos no modelo DR.	139
Figura 99	Esquema ilustrativo da etapa de peneiramento do DRI desenfornados no módulo de redução direta, conforme considerado pelo balanço de massa global do modelo termoquímico de redução direta.	140
Figura 100	Detalhamento de informações no fechamento do balanço de massa e de energia na zona de redução.	141
Figura 101	Detalhamento de informações no fechamento do balanço de massa e de energia na zona de transição.	141
Figura 102	Detalhamento de informações no fechamento do balanço de massa e de energia na zona de transição.	142
Figura 103	Detalhamento de informações consideradas pelo modelo DR sobre os minérios a serem enfornados pelo topo do reator de redução.	143
Figura 104	Detalhamento de informações consideradas pelo modelo DR sobre o sistema de peneiramento de minérios.	143
Figura 105	Informações consideradas pelo modelo DR sobre as características do ferro-esponja a ser descarregado.	144
Figura 106	Informações consideradas pelo modelo DR sobre as possíveis etapas de processamento do ferro-esponja após descarregado a frio e antes do envio para a aciaria	145
Figura 107	Tela principal de acesso ao modelo EAF.	146
Figura 108	Materiais metálicos que podem ser considerados no modelo EAF.	.148
Figura 109	Composição química dos materiais metálicos considerados no modelo EAF.	148
Figura 110	Fundentes considerados no modelo EAF.	149
Figura 111	Adição de carbono considerado no modelo EAF.	149
Figura 112	Principais resultados que são capazes de ser calculados pelo modelo EAF.	150

Figura 113	Parâmetros considerados pelo modelo EAF.	.150
Figura 114	Diagrama do processo de otimização pela técnica de minimização por tentativas segundo o método simplex ortogonal.	152
Figura 115	Entidades do modelo GESTOR relacionadas ao gerenciamento do modelo EAF.	154
Figura 116	Entidades do modelo GESTOR, relacionadas ao gerenciamento do modelo DR.	156
Figura 117	Seqüência de operação do modelo GESTOR.	159
Figura 118	Efeito da utilização de um minério granulado na contribuição e na taxa de produção de uma planta de redução direta.	170
Figura 119	Impacto da participação da pelota de sílica mais alta (1,75%) no custo total unitário do módulo de RD.	186
Figura 120	Impacto da participação do DRI no custo total unitário do FEA.	186
Figura 121	Impacto da participação do DRI na seleção do "mix" de sucata do FEA.	187
Figura 122	Impacto da participação das pelotas de alta sílica carregado no módulo de RD sobre a contribuição (CTR) e o custo variável unitário (CVU) da planta de redução direta, para o estudo de caso em questão.	187
Figura 123	Impacto da participação do DRI carregado no FEA sobre a contribuição (CTR) e o custo variável unitário (CVU) da aciaria elétrica, para o estudo de caso em questão.	188
Figura 124	Impacto da participação do DRI carregado no FEA sobre os outros custos variáveis (OCV) e os custos com metálicos na aciaria elétrica, para o estudo de caso em questão.	188
Figura 125	Impacto da participação de pelotas de alta sílica carregado no reator de RD sobre os outros custos variáveis (OCV) e os custos com carga ferrífera na redução direta, para o estudo de caso em questão.	189
Figura 126	Prêmio merecido pela pelota de alta sílica, atribuído ao seu superior resultado econômico, a partir de seu uso gradativo na operação de redução direta em estudo.	189
Figura 127	Prêmio merecido pelo pré-reduzido carregado no FEA, atribuído ao seu superior resultado econômico, a partir de seu uso gradual na operação de aciaria elétrica em ostudo	100
	ບ ອເບບບ.	190

Lista de Tabelas

Tabela 1	Consumo de sucata, ferro-gusa e ferro-esponja em aciarias elétricas ao redor do mundo em 2006.	28
Tabela 2	Teores típicos dos elementos residuais que mais expressivamente impactam a qualidade dos aços.	29
Tabela 3	Balanço metálico para os fornos elétricos a arco espalhados pelo mundo em milhões de toneladas, segundo estimativas da Midrex.	33
Tabela 4	Principais parâmetros cinéticos levantados para a carburização na zona de redução de um importante processo de redução direta.	52
Tabela 5	Principais vantagens do HBI em comparação ao CDRI/DRI.	68
Tabela 6	Principais plantas de redução direta produtoras de HBI.	69
Tabela 7	Origem de alguns elementos residuais e como impactam a qualidade do aço.	77
Tabela 8	Qualidade típica para pelotas de redução direta.	78
Tabela	Características físicas e químicas típicas de minérios de ferro usados em redução direta que empregam em gás natural.	84
Tabela 10	Características físicas típicas do DRI e HBI.	88
Tabela 11	Características químicas e metalúrgicas típicas do DRI e HBI.	90
Tabela 12	Evolução do consumo de oxigênio em fornos elétricos a arco.	99
Tabela 13	Quantidades de calor geradas por algumas reações químicas associadas à injeção de oxigênio.	100
Tabela 14	Alguns resultados típicos de desfosforação obtidos em algumas práticas de aciaria elétrica.	108
Tabela 15	Composição química típica da escória do FEA.	110
Tabela 16	Percentuais de carbono, estequiometriamente necessários, à redução de toda a wustita presente no pré-reduzido, durante a sua utilização em fornos elétricos a arco e em função do grau de metalização, segundo a equação.	114
Tabela 17	Mudança na contribuição e no valor de uso de pelotas contendo alta sílica.	171
Tabela 18	Mudança na contribuição e no valor de uso de pelotas contendo menor teor em ferro total.	174

Tabela 19	Mudança na contribuição e no valor de uso de pelotas de minério de ferro contendo menores percentuais de CaO+MgO.	175
Tabela 20	Mudança na contribuição e no valor de uso de pelotas de minério de ferro contendo maior teor de finos.	176
Tabela 21	Informações sobre as pelotas de minério de ferro em estudo.	178
Tabela 22	Parâmetros pré-estabelecidos para o ferro-esponsa a ser produzido.	178
Tabela 23	Definição e características químicas da carga metálica para o FEA.	181
Tabela 24	Preços considerados neste estudo de caso para as demais matérias-primas e insumos.	182
Tabela 25	Resultados obtidos a partir da utilização do modelo GESTOR no estudo de caso em pauta. Análise da planta de redução direta.	184
Tabela 26	Resultados obtidos a partir da utilização do modelo GESTOR no estudo de caso em pauta. Análise da operação de aciaria elétrica.	184